Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 220
Filtrar
1.
ACS Sens ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38695880

RESUMEN

Although electronic textiles that can detect external stimuli show great promise for fire rescue, existing firefighting clothing is still scarce for simultaneously integrating reliable early fire warning and real-time motion sensing, hardly providing intelligent personal protection under complex high-temperature conditions. Herein, we introduce an "all-in-one" hierarchically sandwiched fabric (HSF) sensor with a simultaneous temperature and pressure stimulus response for developing intelligent personal protection. A cross-arranged structure design has been proposed to tackle the serious mutual interference challenge during multimode sensing using two separate sets of core-sheath composite yarns and arrayed graphene-coated aerogels. The functional design of the HSF sensor not only possesses wide-range temperature sensing from 25 to 400 °C without pressure disturbance but also enables highly sensitive pressure response with good thermal adaptability (up to 400 °C) and wide pressure detection range (up to 120 kPa). As a proof of concept, we integrate large-scalable HSF sensors onto conventional firefighting clothing for passive/active fire warning and also detecting spatial pressure and temperature distribution when a firefighter is exposed to high-temperature flames, which may provide a useful design strategy for the application of intelligent firefighting protective clothing.

2.
Front Bioeng Biotechnol ; 12: 1375586, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38562670

RESUMEN

The safety of crews is the primary concern in the manned lunar landing project, particularly during re-entry as the manned spacecraft returns from a direct Lunar-Earth trajectory. This paper analyzed the crew's chest biomechanical response to assess potential injuries caused by acceleration loads during the re-entry phase. Initially, a sophisticated finite element model of the chest was constructed, whose effectiveness was verified by experiments involving vertebral range of motion, rib lateral rupture, and chest frontal impact. The model was then subjected to the return re-entry loads simulating the Apollo and Chang'e 5 T1 (CE-5T1) test returner to specifically analyze the correlation between the acceleration load and the injury of the crew's chest tissues and organs. The results indicate that the biomechanical response of crew chest bone tissue under the two return missions is within the threshold value and will not directly cause damage. Compared to the Apollo mission, the CE-5T1 mission's load poses a higher risk to internal organs. These findings can enhance the crew's safety and provide reliable assurance for future space exploration.

3.
Am J Physiol Cell Physiol ; 326(5): C1353-C1366, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38497110

RESUMEN

The tissue inhibitor of metalloproteinases 2 (TIMP2) has emerged as a promising biomarker for predicting the risk of sepsis-associated acute kidney injury (SA-AKI). However, its exact role in SA-AKI and the underlying mechanism remains unclear. In this study, we investigated the impact of kidney tubule-specific Timp2 knockout mice on kidney injury and inflammation. Our findings demonstrated that Timp2-knockout mice exhibited more severe kidney injury than wild-type mice, along with elevated levels of pyroptosis markers NOD-like receptor protein 3 (NLRP3), Caspase1, and gasdermin D (GSDMD) in the early stage of SA-AKI. Conversely, the expression of exogenous TIMP2 in TIMP2-knockout mice still protected against kidney damage and inflammation. In in vitro experiments, using recombinant TIMP2 protein, TIMP2 knockdown demonstrated that exogenous TIMP2 inhibited pyroptosis of renal tubular cells stimulated by lipopolysaccharide (LPS). Mechanistically, TIMP2 promoted the ubiquitination and autophagy-dependent degradation of NLRP3 by increasing intracellular cyclic adenosine monophosphate (cAMP), which mediated NLRP3 degradation through recruiting the E3 ligase MARCH7, attenuating downstream pyroptosis, and thus alleviating primary tubular cell damage. These results revealed the renoprotective role of extracellular TIMP2 in SA-AKI by attenuating tubular pyroptosis, and suggested that exogenous administration of TIMP2 could be a promising therapeutic intervention for SA-AKI treatment.NEW & NOTEWORTHY Tissue inhibitor of metalloproteinase 2 (TIMP-2) has been found to be the best biomarker for predicting the risk of sepsis-associated acute kidney injury (SA-AKI). However, its role and the underlying mechanism in SA-AKI remain elusive. The authors demonstrated in this study using kidney tubule-specific knockout mice model of SA-AKI and primary renal tubule cells stimulated with lipopolysaccharide (LPS) that extracellular TIMP-2 promoted NOD-like receptor protein 3 (NLRP3) ubiquitination and autophagy-dependent degradation by increasing intracellular cyclic adenosine monophosphate (cAMP), thus attenuated pyroptosis and alleviated renal damage.


Asunto(s)
Lesión Renal Aguda , AMP Cíclico , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR , Piroptosis , Sepsis , Inhibidor Tisular de Metaloproteinasa-2 , Animales , Ratones , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Lesión Renal Aguda/genética , Lesión Renal Aguda/prevención & control , Autofagia , AMP Cíclico/metabolismo , Lipopolisacáridos/toxicidad , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Sepsis/complicaciones , Sepsis/metabolismo , Transducción de Señal , Inhibidor Tisular de Metaloproteinasa-2/metabolismo , Inhibidor Tisular de Metaloproteinasa-2/genética
4.
Infect Dis Ther ; 13(4): 941-951, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38483776

RESUMEN

INTRODUCTION: The replacement intervals for infusion sets may differ among healthcare institutions, which may have an impact on the occurrence of central line-associated bloodstream infections (CLABSI). Nevertheless, there exists a limited amount of high-quality evidence available to assist clinicians in determining the most suitable replacement intervals for infusion sets. Therefore, the objective of this trial is to compare the efficacy of 24-h and 96-h replacement intervals for infusion sets on CLABSI among critically ill adults who have central venous access devices. METHODS: This is a multicenter, parallel-group randomized controlled trial that will investigate the effect of infusion set replacement intervals on CLABSI in adult patients admitted to intensive care units (ICUs). The study will enroll 1240 participants who meet the inclusion criteria, which includes being 18 years or older, expected to stay in the ICU for longer than 96 h, and in need of central venous access. Participants will be randomly assigned to either a control group receiving a 96-h replacement interval or a treatment group receiving a 24-h replacement interval. PLANNED OUTCOME: The primary outcome of this trial is the rate of CLABSI within 28 days after randomization. CONCLUSION: This is the first randomized controlled trial to investigate the effects of infusion set replacement at 24-h and 96-h intervals on CLABSI in ICU patients. TRIAL REGISTRATION: ClinicalTrials.gov identifier, NCT05359601.

5.
Int Immunopharmacol ; 129: 111564, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38320352

RESUMEN

The pathological mechanism of sepsis-associated acute kidney injury (SA-AKI) is complex and involves tubular epithelial cell (TEC) death and immune cell activation. However, the interaction between tubular cell death and macrophage-mediated inflammation remains unclear. In this study, we uncovered that TEC ferroptosis was activated in SA-AKI. Increased levels of ferroptotic markers, including ferroptosis-related proteins, lipid peroxidation, malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), reactive oxygen species (ROS), and mitochondrial damage, were observed in the kidney tissue of cecum ligation and puncture (CLP) and Lipopolysaccharide (LPS)-induced SA-AKI mouse models, which were subsequently suppressed by Ferrostatin-1 (Fer-1). In vitro experiments showed that Fer-1 inhibits LPS-induced mitochondrial damage, Fe2+ accumulation, and cytosolic ROS production. Moreover, it was found that TEC ferroptosis induced by promoted macrophage-inducible C-type lectin (Mincle) and its downstream expression and M1 polarization, which was mediated by the release of spliceosome-associated protein 130 (SAP130), an endogenous ligand of Mincle, from TEC. It was confirmed in vitro that the supernatant from LPS-stimulated TECs promoted Mincle expression and M1 polarization in macrophages. Further experiments revealed that M1 macrophages aggravated TEC ferroptosis, which was offset by neutralizing SAP130 or inhibiting Mincle expression. In addition, neutralizing the circulatory SAP130 blunted kidney ferroptosis and Mincle expression, as well as macrophage infiltration in the kidney of SA-AKI mice. In conclusion, the release of SAP130 from ferroptotic TECs promoted M1 macrophage polarization by triggering Mincle/syk/NF-κB signaling, and M1 macrophages, in turn, aggravated TEC ferroptosis.


Asunto(s)
Lesión Renal Aguda , Ciclohexilaminas , Ferroptosis , Fenilendiaminas , Sepsis , Animales , Ratones , Células Epiteliales , Lipopolisacáridos , Especies Reactivas de Oxígeno
6.
Shock ; 61(4): 520-526, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38369528

RESUMEN

ABSTRACT: Background: Normal saline solution (NSS) and Ringer's acetate solution (RAS) are commonly given to critically ill patients as a fundamental fluid therapy. However, the effect of RAS and NSS on sepsis patient outcomes remains unknown. Methods: We conducted a single-center prospective open-label parallel controlled trial to enroll adult patients (>18 years old) diagnosed with sepsis. Participants received either RAS or NSS for intravenous infusion for 5 days. The primary outcome was the incidence of major adverse kidney events within 28 days (MAKE28). Secondary outcomes included 30-/90-day mortality, acute kidney injury, and hyperchloremia. The patients were then reclassified as NSS-only, RAS-only, and RAS + NSS groups according to the type of fluid they had received before enrollment. Thereafter, a secondary post hoc analysis was performed. Results: Two hundred fifty-five septic patients were screened, and 143 patients (51.0% in RAS group and 49.0% in NSS group) were enrolled in the study. Each group received a median of 2 L of fluid administration during five interventional days. Of the patients, 39.3% had received 500 mL (500-1,000 mL) of balanced salt solutions (BSSs) before intensive care unit (ICU) admission. There was no statistical difference among the RAS and NSS group on the primary outcome MAKE28 in the initial analysis (23.3% vs. 20.0%; OR, 1.2 [0.6 to 2.2]; P = 0.69). MAKE28 was observed in 23.3% of RAS-only versus 27.3% of NSS-only group patients (0.82 [0.35-1.94], P = 0.65) in the secondary post hoc analysis. The patients in the NSS-only group had a longer invasive mechanical ventilation days and a trend toward the accumulation of serum chloride. Conclusion: This study observed no statistically significant difference on MAKE28 and secondary outcomes among sepsis patients receiving RAS and NSS. However, it is unclear whether the large amount of fluid resuscitation before ICU admission and carrier NSS narrowed the difference between BSSs and NSSs.


Asunto(s)
Lactato de Ringer , Solución Salina , Sepsis , Adulto , Humanos , Fluidoterapia , Soluciones Isotónicas/uso terapéutico , Estudios Prospectivos , Lactato de Ringer/uso terapéutico , Solución de Ringer , Solución Salina/uso terapéutico , Sepsis/tratamiento farmacológico , Cloruro de Sodio/uso terapéutico
7.
Heliyon ; 10(1): e22664, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38163157

RESUMEN

Background: Multiple modes of cell death occur during the development of sepsis. Among these patterns, cuproptosis has recently been identified as a regulated form of cell death. However, its impact on the onset and progression of sepsis remains unclear. Method: We screened a dataset of gene expression profiles from patients with sepsis using the GEO database. Survival analysis was performed to analyze the relationship between cuproptosis-related genes (CRGs) and prognosis. Hub genes were identified through univariate Cox regression analysis. The diagnostic value of hub genes in sepsis was tested in both training sets (GSE65682) and validation sets (GSE134347). To examine the association between hub genes and immune cells, single-sample gene set enrichment analysis (ssGSEA) and Pearson correlation analysis were employed. Additionally, the CRGs were validated in a septic mouse model using real-time quantitative PCR (qRT-PCR) and immunohistochemistry (IHC). Results: In sepsis, most CRGs were upregulated, with only DLD and MTF1 downregulated. High expression of three genes (GLE, LIAS, and PDHB) was associated with better prognosis, but only two hub genes (LIAS, PDHB) reached statistical significance. The receiver operating characteristic (ROC) analysis for diagnosing sepsis showed LIAS had a range of 0.793-0.906, while PDHB achieved values of 0.882 and 0.975 in the training and validation sets, respectively. ssGSEA analysis revealed a lower number of immune cells in the sepsis group, and there was a correlation between immune cell population and CRGs (LIAS, PDHB). Analysis in the septic mouse model demonstrated no significant difference in mRNA expression levels and IHC staining between LIAS and PDHB in heart and liver tissues, but up-regulation was observed in lung tissues. Furthermore, the mRNA expression levels and IHC staining of LIAS and PDHB were down-regulated in renal tissues. Conclusions: Cuproptosis is emerging as a significant factor in the development of sepsis. LIAS and PDHB, identified as potential diagnostic biomarkers for cuproptosis-associated sepsis, are believed to play crucial roles in the initiation and progression of cuproptosis-induced sepsis.

8.
Blood Purif ; 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38228111

RESUMEN

INTRODUCTION: The objective of this study is to examine the utility of protein kinase N1 (PKN1) as a biomarker of cardiac surgery-associated AKI (CSA-AKI). METHODS: A prospective cohort study of 110 adults undergoing on-pump cardiac surgery was conducted. The associations between post-operative PKN1 and CSA-AKI, AKI severity, need for renal replacement therapy (RRT), duration of AKI, length of ICU stay and post-operative hospital stay were evaluated. RESULTS: Patients were categorized into three groups according to PKN1 tertiles. The incidence of CSA-AKI in the third tertile was 3.4-fold higher than that in the first. PKN1 was an independent risk factor for CSA-AKI. The discrimination of PKN1 to CSA-AKI assessed by ROC curve indicated that the AUC was 0.70, and the best cutoff was 5.025ng/mL. This group (>5.025ng/mL) was more likely to develop CSA-AKI (P<0.001). The combined AUC of EuroSCORE, aortic cross-clamp time and PKN1 was 0.82 (P<0.001). A higher level of PKN1 related to increased need for RRT, longer duration of AKI, and length of ICU and post-operative hospital stays. CONCLUSIONS: PKN1 could be a potential biomarker for the prediction of CSA-AKI. The combination of PKN1, EuroSCORE and aortic cross-clamp time were likely to predict the occurrence of CSA-AKI.

9.
Postgrad Med J ; 100(1182): 219-227, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38244550

RESUMEN

BACKGROUND: The lack of transparency is a prevalent issue among the current machine-learning (ML) algorithms utilized for predicting mortality risk. Herein, we aimed to improve transparency by utilizing the latest ML explicable technology, SHapley Additive exPlanation (SHAP), to develop a predictive model for critically ill patients. METHODS: We extracted data from the Medical Information Mart for Intensive Care IV database, encompassing all intensive care unit admissions. We employed nine different methods to develop the models. The most accurate model, with the highest area under the receiver operating characteristic curve, was selected as the optimal model. Additionally, we used SHAP to explain the workings of the ML model. RESULTS: The study included 21 395 critically ill patients, with a median age of 68 years (interquartile range, 56-79 years), and most patients were male (56.9%). The cohort was randomly split into a training set (N = 16 046) and a validation set (N = 5349). Among the nine models developed, the Random Forest model had the highest accuracy (87.62%) and the best area under the receiver operating characteristic curve value (0.89). The SHAP summary analysis showed that Glasgow Coma Scale, urine output, and blood urea nitrogen were the top three risk factors for outcome prediction. Furthermore, SHAP dependency analysis and SHAP force analysis were used to interpret the Random Forest model at the factor level and individual level, respectively. CONCLUSION: A transparent ML model for predicting outcomes in critically ill patients using SHAP methodology is feasible and effective. SHAP values significantly improve the explainability of ML models.


Asunto(s)
Inteligencia Artificial , Enfermedad Crítica , Humanos , Masculino , Persona de Mediana Edad , Anciano , Femenino , Enfermedad Crítica/terapia , Unidades de Cuidados Intensivos , Algoritmos , Cuidados Críticos
10.
Kidney Int ; 105(3): 508-523, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38163633

RESUMEN

Sepsis-induced acute kidney injury (S-AKI) is highly lethal, and effective drugs for treatment are scarce. Previously, we reported the robust therapeutic efficacy of fibroblastic reticular cells (FRCs) in sepsis. Here, we demonstrate the ability of FRC-derived exosomes (FRC-Exos) to improve C57BL/6 mouse kidney function following cecal ligation and puncture-induced sepsis. In vivo imaging confirmed that FRC-Exos homed to injured kidneys. RNA-Seq analysis of FRC-Exo-treated primary kidney tubular cells (PKTCs) revealed that FRC-Exos influenced PKTC fate in the presence of lipopolysaccharide (LPS). FRC-Exos promoted kinase PINK1-dependent mitophagy and inhibited NLRP3 inflammasome activation in LPS-stimulated PKTCs. To dissect the mechanism underlying the protective role of Exos in S-AKI, we examined the proteins within Exos by mass spectrometry and found that CD5L was the most upregulated protein in FRC-Exos compared to macrophage-derived Exos. Recombinant CD5L treatment in vitro attenuated kidney cell swelling and surface bubble formation after LPS stimulation. FRCs were infected with a CD5L lentivirus to increase CD5L levels in FRC-Exos, which were then modified in vitro with the kidney tubular cell targeting peptide LTH, a peptide that binds to the biomarker protein kidney injury molecule-1 expressed on injured tubule cells, to enhance binding specificity. Compared with an equivalent dose of recombinant CD5L, the modified CD5L-enriched FRC-Exos selectively bound PKTCs, promoted kinase PINK-ubiquitin ligase Parkin-mediated mitophagy, inhibiting pyroptosis and improved kidney function by hindering NLRP3 inflammasome activation, thereby improving the sepsis survival rate. Thus, strategies to modify FRC-Exos could be a new avenue in developing therapeutics against kidney injury.


Asunto(s)
Lesión Renal Aguda , Exosomas , Sepsis , Ratones , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Exosomas/metabolismo , Lipopolisacáridos , Ratones Endogámicos C57BL , Lesión Renal Aguda/metabolismo , Sepsis/complicaciones , Sepsis/metabolismo
11.
Inflammation ; 47(1): 454-468, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37979076

RESUMEN

Besides being recognized by membrane receptor TLR4, lipopolysaccharide (LPS) can also be internalized into the cytosol and activate Caspase-4/11 pyroptotic pathways to further amplify inflammation in sepsis. The objective of this study was to investigate whether Galectin-3 (Gal3) could promote the uptake of LPS by governing RAGE or administering endocytosis, consequently activating Caspase 4/11 and mediating pyroptosis in sepsis-associated acute kidney injury (SA-AKI). By pinpointing Gal3, LPS, and EEA1 (endosome-marker) or LAMP1 (lysosome-marker) respectively, immunofluorescence discovered that Gal3 and LPS were mainly aggregated in early endosomes initially and translocated into lysosomes afterwards. In cells and animal models, Gal3 and the Caspase-4/11 pathways were simultaneously activated, and the overexpression of Gal3 could exacerbate pyroptosis, whereas inhibition of Gal3 or the knockdown of its expression could ameliorate pyroptosis, reduce the pathological changes of SA-AKI and improve the survival of the animals with SA-AKI. Silencing RAGE reduced pyroptosis in primary tubular epithelial cells (PTCs) activated by Gal3 and LPS but not in cells activated by Gal3 and outer membrane vesicles (with LPS inside), whereas pyroptosis in both was reduced by blockade of Gal3, indicating Gal3 promoted pyroptosis through both RAGE-dependent and RAGE-independent pathways. Our investigation further revealed a positive correlation between serum Gal3 and pyroptotic biomarkers IL-1 beta and IL-18 in patients with sepsis, and that serum Gal3 was an independent risk factor for mortality. Through our collective exploration, we unraveled the significant role of Gal3 in the internalization of LPS and the provocation of more intense pyroptosis, thus making it a vital pathogenic factor in SA-AKI and a possible therapeutic target. Gal3 enabled the internalization of endotoxin into endosomes and lysosomes via both RAGE-dependent (A) and RAGE-independent (B) pathways, leading to pyroptosis. The suppression of Gal3 curbed Caspase4/11 noncanonical inflammasomes and diminished sepsis and SA-AKI.


Asunto(s)
Lesión Renal Aguda , Sepsis , Animales , Humanos , Endotoxinas/metabolismo , Lipopolisacáridos/farmacología , Galectina 3/metabolismo , Macrófagos/metabolismo , Sepsis/complicaciones , Sepsis/metabolismo , Lesión Renal Aguda/metabolismo
12.
Hum Cell ; 37(2): 420-434, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38133876

RESUMEN

Hypothermic machine perfusion (HMP) has been demonstrated to be more effective in mitigating ischemia-reperfusion injury (IRI) of donation after circulatory death (DCD) organs than cold storage (CS), yet the underlying mechanism remains obscure. We aimed to propose a novel therapeutic approach to ameliorate IRI in DCD liver transplantation. Twelve clinical liver samples were randomly assigned to HMP or CS treatment and subsequent transcriptomics analysis was performed. By combining in vivo HMP models, we discovered that HMP attenuated inflammation, oxidative stress, and apoptosis in DCD liver through a SEPRINA3-mediated PI3Kδ/AKT signaling cascade. Moreover, in the hypoxia/reoxygenation (H/R) model of BRL-3A, overexpression of SERPINA3 mitigated H/R-induced apoptosis, while SERPINA3 knockdown exacerbated cell injury. Idelalisib (IDE) treatment also reversed the protective effect of SERPINA3 overexpression. Overall, our research provided new insights into therapeutic strategies and identified potential novel molecular targets for therapeutic intervention against DCD liver.


Asunto(s)
Trasplante de Hígado , Daño por Reperfusión , Serpinas , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Hígado/metabolismo , Perfusión , Daño por Reperfusión/prevención & control , Daño por Reperfusión/metabolismo , Serpinas/metabolismo
13.
J Intensive Med ; 3(4): 335-344, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-38028636

RESUMEN

Background: The benefits of early use of norepinephrine in endotoxemic shock remain unknown. We aimed to elucidate the effects of different doses of norepinephrine in early-stage endotoxemic shock using a clinically relevant large animal model. Methods: Vasodilatory shock was induced by endotoxin bolus in 30 Bama suckling pigs. Treatment included fluid resuscitation and administration of different doses of norepinephrine, to induce return to baseline mean arterial pressure (MAP). Fluid management, hemodynamic, microcirculation, inflammation, and organ function variables were monitored. All animals were supported for 6 h after endotoxemic shock. Results: Infused fluid volume decreased with increasing norepinephrine dose. Return to baseline MAP was achieved more frequently with doses of 0.8 µg/kg/min and 1.6 µg/kg/min (P <0.01). At the end of the shock resuscitation period, cardiac index was higher in pigs treated with 0.8 µg/kg/min norepinephrine (P <0.01), while systemic vascular resistance was higher in those receiving 0.4 µg/kg/min (P <0.01). Extravascular lung water level and degree of organ edema were higher in animals administered no or 0.2 µg/kg/min norepinephrine (P <0.01), while the percentage of perfused small vessel density (PSVD) was higher in those receiving 0.8 µg/kg/min (P <0.05) and serum lactate was higher in the groups administered no and 1.6 µg/kg/min norepinephrine (P <0.01). Conclusions: The impact of norepinephrine on the macro- and micro-circulation in early-stage endotoxemic shock is dose-dependent, with very low and very high doses resulting in detrimental effects. Only an appropriate norepinephrine dose was associated with improved tissue perfusion and organ function.

14.
Diagnostics (Basel) ; 13(21)2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37958192

RESUMEN

Acute respiratory distress syndrome (ARDS) is a common and fatal disease, characterized by lung inflammation, edema, poor oxygenation, and the need for mechanical ventilation, or even extracorporeal membrane oxygenation if the patient is unresponsive to routine treatment. In this review, we aim to explore advances in biomarkers for the diagnosis and treatment of ARDS. In viewing the distinct characteristics of each biomarker, we classified the biomarkers into the following six categories: inflammatory, alveolar epithelial injury, endothelial injury, coagulation/fibrinolysis, extracellular matrix turnover, and oxidative stress biomarkers. In addition, we discussed the potential role of machine learning in identifying and utilizing these biomarkers and reviewed its clinical application. Despite the tremendous progress in biomarker research, there remain nonnegligible gaps between biomarker discovery and clinical utility. The challenges and future directions in ARDS research concern investigators as well as clinicians, underscoring the essentiality of continued investigation to improve diagnosis and treatment.

15.
Int J Mol Sci ; 24(21)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37958550

RESUMEN

Acute kidney injury (AKI) is a severe health problem associated with high morbidity and mortality rates. It currently lacks specific therapeutic strategies. This review focuses on the mechanisms underlying the actions of exosomes derived from different cell sources, including red blood cells, macrophages, monocytes, mesenchymal stem cells, and renal tubular cells, in AKI. We also investigate the effects of various exosome contents (such as miRNA, lncRNA, circRNA, mRNA, and proteins) in promoting renal tubular cell regeneration and angiogenesis, regulating autophagy, suppressing inflammatory responses and oxidative stress, and preventing fibrosis to facilitate AKI repair. Moreover, we highlight the interactions between macrophages and renal tubular cells through exosomes, which contribute to the progression of AKI. Additionally, exosomes and their contents show promise as potential biomarkers for diagnosing AKI. The engineering of exosomes has improved their clinical potential by enhancing isolation and enrichment, target delivery to injured renal tissues, and incorporating small molecular modifications for clinical use. However, further research is needed to better understand the specific mechanisms underlying exosome actions, their delivery pathways to renal tubular cells, and the application of multi-omics research in studying AKI.


Asunto(s)
Lesión Renal Aguda , Exosomas , Células Madre Mesenquimatosas , MicroARNs , Humanos , Exosomas/metabolismo , Lesión Renal Aguda/diagnóstico , Lesión Renal Aguda/terapia , Lesión Renal Aguda/genética , Riñón , MicroARNs/genética , MicroARNs/metabolismo
16.
BMC Med Imaging ; 23(1): 170, 2023 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-37904129

RESUMEN

OBJECTIVE: This study explored using an improved ultrasound (US) for quantitative evaluation of the degree of pelvic organ prolapse(POP). DESIGN: A transluminal probe was used to standardize ultrasound imaging of pelvic floor organ displacements. A US reference line was fixed between the lower edge of the pubic symphysis and the central axis of the pubic symphysis at a 30°counterclockwise angle. METHOD: Points Aa, Ba, C and Bp on pelvic organ prolapse quantification (POP-Q) were then compared with the points on pelvic floor ultrasound (PFUS). RESULTS: One hundred thirteen patients were included in the analysis of the standard US plane. Correlations were good in the anterior and middle compartments (PBN:Aa, ICC = 0.922; PBB:Ba, ICC = 0.923; and PC:C, ICC = 0.925), and Bland-Altman statistical maps corresponding to the average difference around the 30°horizontal line were close to 0. Correlations were poor in the posterior compartment (PRA:Bp, ICC = 0.444). However, eight (7.1%) cases of intestinal hernia and 21 (18.6%) cases of rectocele were diagnosed. CONCLUSIONS: Introital PFUS using an intracavitary probe, which is gently placed at the introitus of the urethra and the vagina, may be accurately used to evaluate organ displacement. The application of a 30°horizontal line may improve the repeatability of the US diagnosis of POP.


Asunto(s)
Enfermedades de los Genitales Femeninos , Prolapso de Órgano Pélvico , Humanos , Femenino , Prolapso de Órgano Pélvico/diagnóstico por imagen , Diafragma Pélvico/diagnóstico por imagen , Ultrasonografía/métodos
17.
Front Neurosci ; 17: 1234033, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37854293

RESUMEN

Purpose: To investigate the effect of transcutaneous cervical vagus nerve stimulation (tcVNS) on motor cortex excitability in healthy adults. Method: Twenty eight healthy subjects were assigned to receive real and sham tcVNS for 30 min. The interval between the real and sham conditions was more than 24 h, and the sequence was random. The central and peripheral motor-evoked potential (MEP) of the right first dorsal interosseous (FDI) muscle was measured by transcranial magnetic stimulation (TMS) before and after stimulation. MEP latency, MEP amplitude and rest motor threshold (rMT) were analyzed before and after stimulation. Results: MEP amplitude, MEP latency and rMT had significant interaction effect between time points and conditions (p < 0.05). After real stimulation, the MEP amplitude was significantly increased (p < 0.001). MEP latency (p < 0.001) and rMT (p = 0.006) was decreased than that of baseline. The MEP amplitude on real condition was higher than that of sham stimulation after stimulation (p = 0.027). The latency after the real stimulation was significantly shorter than that after sham stimulation (p = 0.005). No significantly difference was found in rMT after stimulation between real and sham conditions (p > 0.05). Conclusion: tcVNS could improve motor cortex excitability in healthy adults.

18.
Front Immunol ; 14: 1190938, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37529046

RESUMEN

Background: Prior observational studies have found an association between kidney function and cardiovascular diseases (CVDs). However, these studies did not investigate causality. Therefore, the aim of this study is to examine the causal relationship between kidney function and CVDs. Methods: We utilized data from the eICU Collaborative Research Database (eICU-CRD) from the years 2014-2015 to evaluate the observational association between renal failure (RF) and CVDs. To investigate the causal effects of kidney function (estimated glomerular filtration rate [eGFR] and chronic kidney disease [CKD]) and CVDs (including atrial fibrillation [AF], coronary artery disease [CAD], heart failure [HF], any stroke [AS], and any ischemic stroke [AIS]), we conducted a two-sample bidirectional Mendelian randomization (MR) analysis. Results: In the observational analysis, a total of 157,883 patients were included. After adjusting for potential confounding factors, there was no significant association between baseline RF and an increased risk of developing CVDs during hospitalization [adjusted odds ratio (OR): 1.056, 95% confidence interval (CI): 0.993 to 1.123, P = 0.083]. Conversely, baseline CVDs was significantly associated with an increased risk of developing RF during hospitalization (adjusted OR: 1.189, 95% CI: 1.139 to 1.240, P < 0.001). In the MR analysis, genetically predicted AF was associated with an increased risk of CKD (OR: 1.050, 95% CI: 1.016 to 1.085, P = 0.004). HF was correlated with lower eGFR (ß: -0.056, 95% CI: -0.090 to -0.022, P = 0.001). A genetic susceptibility for AS and AIS was linked to lower eGFR (ß: -0.057, 95% CI: -0.079 to -0.036, P < 0.001; ß: -0.029, 95% CI: -0.050 to -0.009, P = 0.005; respectively) and a higher risk of CKD (OR: 1.332, 95% CI: 1.162 to 1.528, P < 0.001; OR: 1.197, 95% CI: 1.023 to 1.400, P = 0.025; respectively). Regarding the reverse direction analysis, there was insufficient evidence to prove the causal effects of kidney function on CVDs. Outcomes remained consistent in sensitivity analyses. Conclusion: Our study provides evidence for causal effects of CVDs on kidney function. However, the evidence to support the causal effects of kidney function on CVDs is currently insufficient. Further mechanistic studies are required to determine the causality.


Asunto(s)
Fibrilación Atrial , Enfermedades Cardiovasculares , Insuficiencia Cardíaca , Insuficiencia Renal Crónica , Insuficiencia Renal , Humanos , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/genética , Análisis de la Aleatorización Mendeliana , Fibrilación Atrial/epidemiología , Fibrilación Atrial/genética , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/genética , Riñón
19.
Commun Biol ; 6(1): 889, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37644178

RESUMEN

Renal ischemia/reperfusion (I/R) injury contributes to the development of acute kidney injury (AKI). Kidney is the second organ rich in mitochondrial content next to the heart. Mitochondrial damage substantially contributes for AKI development. Mitophagy eliminates damaged mitochondria from the cells to maintain a healthy mitochondrial population, which plays an important role in AKI. Pannexin 1 (PANX1) channel transmembrane proteins are known to drive inflammation and release of adenosine triphosphate (ATP) during I/R injury. However, the specific role of PANX1 on mitophagy regulation in renal I/R injury remains elusive. In this study, we find that serum level of PANX1 is elevated in patients who developed AKI after cardiac surgery, and the level of PANX1 is positively correlated with serum creatinine and urea nitrogen levels. Using the mouse model of renal I/R injury in vivo and cell-based hypoxia/reoxygenation (H/R) model in vitro, we prove that genetic deletion of PANX1 mitigate the kidney tubular cell death, oxidative stress and mitochondrial damage after I/R injury through enhanced mitophagy. Mechanistically, PANX1 disrupts mitophagy by influencing ATP-P2Y-mTOR signal pathway. These observations provide evidence that PANX1 could be a potential biomarker for AKI and a therapeutic target to alleviate AKI caused by I/R injury.


Asunto(s)
Lesión Renal Aguda , Mitofagia , Animales , Ratones , Riñón , Adenosina Trifosfato , Isquemia
20.
Acta Haematol ; 146(6): 517-521, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37634507

RESUMEN

INTRODUCTION: The purpose of this study was to examine the effect of iron overload on the mobilization of peripheral blood stem cells (PBSCs) in pediatric patients with ß-thalassemia major (TM). METHODS: We retrospectively reviewed the records of 226 patients with TM from whom PBSCs were collected. Iron overload was based on serum ferritin level, and liver and cardiac iron overload was measured by magnetic resonance imaging (MRI) T2*. RESULTS: The mean age of the TM patients was 7.35 ± 3.41 years. Of the patients, only 171 received MRI. Of the 171 patients, 35 had normal liver iron levels, 39 mild liver iron overload, 90 intermediate liver iron overload, and 7 severe liver iron overload. The intermediate + severe group was associated with significantly higher age and BMI and lower leukapheresis product white blood cell count and CD34+ cell levels (all, p < 0.05). CONCLUSION: Leukapheresis indices were similar between patients with different degrees of iron overload according to the ferritin level and cardiac iron overload, in which the later might be due to the small number of patients with cardiac overload. In patients with TM, the intermediate and severe liver iron overload was associated with poorer mobilization of PBSCs.


Asunto(s)
Sobrecarga de Hierro , Células Madre de Sangre Periférica , Talasemia beta , Humanos , Niño , Preescolar , Talasemia beta/complicaciones , Talasemia beta/terapia , Ferritinas , Estudios Retrospectivos , Células Madre de Sangre Periférica/metabolismo , Células Madre de Sangre Periférica/patología , Hígado/metabolismo , Imagen por Resonancia Magnética/métodos , Miocardio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...